On an intrinsic formulation of time-variant Port Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
On an intrinsic formulation of time-variant Port Hamiltonian systems
In this contribution we present an intrinsic description of time-variant Port Hamiltonian systems as they appear in modeling and control theory. This formulation is based on the splitting of the state bundle and the use of appropriate covariant derivatives, which guarantees that the structure of the equations is invariant with respect to time-variant coordinate transformations. In particular, w...
متن کاملPort-Hamiltonian Systems on Graphs
In this paper we present a unifying geometric and compositional framework for modeling complex physical network dynamics as portHamiltonian systems on open graphs. Basic idea is to associate with the incidence matrix of the graph a Dirac structure relating the flow and effort variables associated to the edges, internal vertices, as well as boundary vertices of the graph, and to formulate energy...
متن کاملPort-Hamiltonian Systems Theory: An Introductory Overview Port-Hamiltonian Systems Theory: An Introductory Overview
An up-to-date survey of the theory of port-Hamiltonian systems is given, emphasizing novel developments and relationships with other formalisms. Port-Hamiltonian systems theory yields a systematic framework for network modeling of multi-physics systems. Examples from different areas show the range of applicability. While the emphasis is on modeling and analysis, the last part provides a brief i...
متن کاملCoupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation
The aim of this paper is to study a conservative wave equation coupled to a diffusion equation. This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as Webster-Lokshin model, has variable coefficients in space, and a fractional derivative in time. This equatio...
متن کاملPort-Hamiltonian systems: an introductory survey
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson struct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2012
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2012.06.014